Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates

نویسندگان

  • Hiva Ghanbari
  • Katya Scheinberg
چکیده

In [19], a general, inexact, efficient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of this method by establishing a simple stopping criterion for the subproblem optimization. Furthermore, we consider an accelerated variant, based on FISTA [1], to the proximal quasi-Newton algorithm. A similar accelerated method has been considered in [7], where the convergence rate analysis relies on very strong impractical assumptions. We present a modified analysis while relaxing these assumptions and perform a practical comparison of the accelerated proximal quasiNewton algorithm and the regular one. Our analysis and computational results show that acceleration may not bring any benefit in the quasi-Newton setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Quasi-Newton Methods for Convex Optimization

In [19], a general, inexact, e cient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of t...

متن کامل

An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...

متن کامل

Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings

State of the art statistical estimators for high-dimensional problems take the form of regularized, and hence non-smooth, convex programs. A key facet of these statistical estimation problems is that these are typically not strongly convex under a high-dimensional sampling regime when the Hessian matrix becomes rankdeficient. Under vanilla convexity however, proximal optimization methods attain...

متن کامل

Adaptive Fista

In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class of SR1 (identity minus rank 1) proximal quas...

متن کامل

An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2018